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Abstract

This paper presents a theoretical extension of the DeTEcT framework proposed
by Sadykhov et al. [I], where a formal analysis framework was introduced for mod-
elling wealth distribution in token economies. DeTEcT is a framework for analysing
economic activity, simulating macroeconomic scenarios, and algorithmically set-
ting policies in token economies. This paper proposes four ways of parametrizing
the framework, where dynamic vs static parametrization is considered along with
the probabilistic vs non-probabilistic. Using these parametrization techniques, we
demonstrate that by adding restrictions to the framework it is possible to derive
the existing wealth distribution models from DeTEcT.

In addition to exploring parametrization techniques, this paper studies how
money supply in DeTEcT framework can be transformed to become dynamic, and
how this change will affect the dynamics of wealth distribution. The motivation
for studying dynamic money supply is that it enables DeTEcT to be applied to
modelling token economies without maximum supply (i.e., Ethereum), and it adds
constraints to the framework in the form of symmetries.
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1 Introduction

Token economies are economies that have a medium for valuation, transaction and value
storage in the form of tokens (i.e., currency native to the economy). These tokens can
be minted (i.e., new tokens are created) and burned (i.e., existing tokens are destroyed),
while the study of tokens and token economies is generally referred to as Tokenomics.

Acting under the assumption that tokens are a mechanism for storage of wealth and
representation of the value of scarce resources, we can define tokenomics as the study of
the efficient allocation of wealth in a token economy [3], 4]. Some of the questions that
tokenomics aims to address are: how does an economic system provision and allocate
scarce resources, how does the economy interact with the external economic systems and
stimuli, what guides the behaviour of economic participants, and what is the “efficiency”
of these processes?

In an attempt to answer these question, we have previously defined a formal analysis
framework called DeTEcT [I], which models interactions between groups of heterogeneous
agents in token economies, simulates wealth distribution, and can be used to propose
policies to be implemented in a token economy to achieve a desired wealth distribution.
DeTEcT helps to define an economic system as a robust mathematical construction,
facilitating theoretical study of the system, while maintaining flexibility to be adjusted to
analyse economies with specific traits (e.g., economies with different rules of interactions
between agents).

However, despite an already wide range of applications, the framework still has some
limitations, such as constant maximum supply of tokens, exclusively static parameters,
or the limitations of numerical solution method. In this paper we aim to address some
of the limiting factors to make DeTEcT a more flexible framework, without loosing any
mathematical robustness.

1.1 Scope

The aim of this paper is to define different possible configurations for the parametrization
of the framework, demonstrate how existing wealth distribution models can be derived
from DeTEcT, and define a method for modelling an economy with a dynamic maximum
supply (i.e., maximum supply that varies in time). We address the first two questions in
section [3 as these questions are interrelated, while we address the last question in section
M Note that these sections are not arranged in a specific order, as we believe each of
these questions is equally important.

We start section [3] by demonstrating how to parametrize the framework with parame-
ters that change in time (i.e., dynamic parameters) and with parameters that are defined
using probabilistic techniques (i.e., probabilistic parameters). The section concludes with
us deriving the existing wealth distribution models from DeTEcT framework. The im-
portance of this link is that the existing wealth distribution models we refer to have the
support of empirical data, in particular the wealth distribution model with individual
saving propensities [§], as it results in a Pareto tail distribution which is observed in
real-world economies [12].

Section M expands the application of our framework to economies where maximum
supply changes in time (e.g., Ethereum economy [15]), and explores time translation
symmetry in our framework.



2 Related Work

This paper expands on the mathematics of DeTEcT presented in Sadykhov at al. [1],
so the definitions used here are stated in that paper. In this section we will briefly
reacquaint ourselves with the key concepts of DeTEcT, and cover some of the existing
wealth distribution models from the literature.

2.1 DeTEcT Framework

DeTEcT is a formal analysis framework that models wealth distribution in token economies.
The fundamental building block for DeTEcT is clustering of agents in the economy into
agent categories and categorizing possible interactions between different agent categories.

For example, assume an economy has an agent that manufactures a good (e.g., car)
and sells it on to other agents (e.g., retail customers). We can create two agent categories
in such an economy: Car Manufacturer and Household. We see that Car Manufacturer
interacts with Household through the sale of cars. So, we can describe an interaction
between these agent categories as Car Sale.

Each agent is assumed to have some wealth, and has a mapping called individual
wealth function, f(a,t) = w, where a € A is the label of the agent with A being the set of
all agents in the economy, t is the time step, and w is the wealth of the agent at time step
t. Since each agent category is a set of agents, we have a wealth function F'(A,t) = W for
each agent category A at time step t, and it is a sum of all individual wealth functions of
agents who are considered to be of agent category A (i.e., a € A) at time t.

However, we may have an economy where agents do not have a constant agent category
and they can change between different agent categories. Therefore, the wealth of an agent
category A will change if agent a now belongs to agent category A’. We define this wealth
reallocation from one agent category to another without the agent interacting with other
agents as rotation.

Agent categories, interactions and rotations, together, are referred to as the tokenomic
taxonomy, as it defines the possible routes for wealth movements. This allows us to create
a complete set of possible wealth movements, and to construct the model for possible
wealth reallocation between agent categories.

The motivation behind clustering agents into agent categories consists of two points:
it allows for quicker processing as we model the macroeconomic state of the economy and
therefore work with smaller parameter set, and that in most economies the policies are
directed at groups of economic participants (e.g., corporate tax for companies vs income
tax for households). Tokenomic taxonomy enables DeTEcT to be used for finding policies
to be implemented in an economy, where the policies are directed at well-defined categories
of agents.

To summarize the review of DeTEcT, we define the compartmental dynamical system
at the core of our framework. Assuming an economy has a well-defined maximum supply,
we state that the sum of all wealth functions of all agent categories in the economy always
equals to the maximum supply,

M=) F(At) VteT, (1)
A€FE:

where M is the maximum supply, E; is the pseudo-partition of agent categories (i.e., the
set of all agent categories), and T is the set of all discrete time steps. From this expression



we derive the conservation of wealth in time,

AF(A,t)
0= —. 2
Also, as described in the “Decentralized Token Economy Theory (DeTEcT)” [1], we define
interactions between agent categories A, A’ € FE; through the parameters $44/, known
as the interaction rates, while the rotations are defined by 44/, which are called the
rotation rates. Putting all of these ingredients together, we obtain the generalized form
of the dynamical system with constant parameters that models the dynamics of wealth

distribution,

A > 1 > = >
FW = FO OB -FO]+T-F(t) teT (3)

where - is the matrix-vector product, ® is point-wise vector multiplication, F (t) is the
vector of wealth functions at time t,

F(t) = (F(A, 1), ., F(Ay, )", A, ..., A, € E, (4)
B is an antisymmetric matrix of interaction rates f3,
0 Baja, - Baa,
5 —@.nAQ 0 - BA.QA,L | )
—Baa, —Basa, .- 0
and I" is the matrix of rotation rates where each column sums up to zero,
YA VAAL - VAnA
r— “YA?AQ —7A2 . ’VA?AQ ’ (6)
VA1An  VA2An  --- TVAa

such that the diagonal elements of I' are

Vi = D VAna, (7)
i#m
These are the fundamental blocks of our framework that we will be using and generalizing
in later sections in this paper.

2.2 Wealth Distribution Models

In order to emulate the wealth distribution dynamics in a closed economic system, a family
of kinetic theory models has been proposed [9]. These models were originally used to model
random interactions between gas molecules in a closed container, but in the context of
wealth distribution dynamics they are used to simulate random transactions between the
participants (agents) of the economy to find the equilibrium of wealth distribution.

The models from this family follow a transaction rule,
=x; — Ax,

(8)

where 7,5 € N are the labels of the agents, z; and z; are the wealths of the agents
respectively before the transaction, z; and 2 are their wealths after the transaction, and
Az is the transaction quantity. Based on this transaction rule, different models have
been introduced where the term Az is used to model different behaviours of agents in an
economy.

=1, — Az,



2.2.1 Basic Model Without Saving

The basic model, where agents do not preserve a portion of their wealth, has been proposed
by Dragulescu at al. [5], where the trading rule becomes

(9)

with e ~ U(0, 1) and € its complementary fraction (i.e., e+¢€ = 1). The form of the trading
rule from equation [§ is recovered by setting

Az = éx; — ex;. (10)

In a closed economic system with random transactions taking place according to the
trading rule in equation 9 the wealth distribution becomes a Boltzmann distribution and
leads to inequitable wealth distribution where a few agents hold majority of the wealth.

2.2.2 Model With Constant Global Saving Propensity

In most economic systems, the agents tend to preserve some proportion of their wealth
which can be represented by a wealth distribution model through the introduction of a
saving propensity parameter 0 < A\ < 1, which represents the proportion of wealth an
agent saves, therefore, not using it in the transaction. This model has been introduced
by Chakraborti et al. [7], where the trading rule is defined as

z, = Ax; + (1 — N)(z; + z5),

— Ay + &1 — Ny + 7)), (11)

7
/
Lj
with € and € defined as before. To recover the general trading rule in equation B the

reallocated wealth is defined by
Az = (1 — N)[éx; — exj]. (12)

Note that A is the same regardless of the agent who undergoes transaction. Therefore,
this model implicitly assumes that every agent has the same preference for how much
wealth they will save before a transaction. The wealth distribution after simulating the
random transactions with the rule in equation [[1] results in the Gamma distribution of
wealth between the agents.

2.2.3 Model With Individual Saving Propensities

Individual saving propensities {)\; : 0 < \; < 1} for agent ¢ can be introduced to add
the individual preference of the agents to save a specific portion of their wealth before
transacting. The trading rule with individual saving propensities proposed by Chatterjee
et al. [§ is

! - 13
= Ay 4 El(1 = A+ (1= Ay "
where the general trading rule in equation [l is obtained by setting

If multiple simulations are run using the trading rule in equation [[3] with different indi-
vidual saving propensity settings each time, the average of the equilibrium wealth distri-
butions is the Pareto distribution. Pareto distribution is commonly used in economics to
model the wealth distribution in a society as it describes the disparity of wealth between
the “wealthy” and the “poor” agents in the economy.

4



2.2.4 Summary

The wealth distribution models outlined here are well-established in the academic lit-
erature, and are commonly used for modelling generic macroeconomic principles. For
example, the relaxation time for a wealth distribution to return to its equilibrium can be
measured [I0], or in the case of the model with individual saving propensities, it is used
to describe the Pareto principle [I1] that is observed in real-world economies.

3 Parametrization Extension and Derivation of Ex-
isting Wealth Distribution Models

3.1 Parameter Modification Techniques

In our framework, one of the assumptions we used is that the parameters (i.e., interaction
and rotation rates) are constant. This is useful when we either simulate wealth distribution
based on some “predefined trends”, or when we are trying to find the parameters of the
dynamical system that allow the dynamical system to reach a desired wealth distribution
(i.e., a desired attractor). However, if we drop this assumption and allow parameters to
change at different time steps, we will see that DeTEcT becomes a broad framework that
can be parametrized in a certain way to replicate existing wealth distribution models.

However, before obtaining other wealth distribution models from DeTEcT, we would
like to introduce a taxonomy of different parametrizations that we can use to modify our
original approach [IJ.

We broadly categorize interaction and rotation rates using two features, namely whether
the parameters are static or dynamic, and whether the parameters are probabilistic or
deterministic. These two features allow us to cover all possible extensions that can be
introduced to the DeTEcT framework. Table [[l demonstrates some of the applications of
different parameter modifications, which we will examine on a case-by-case basis.

Deterministic Probabilistic
. Implied parameters for simulation, | Averaged parameters from
Static . . . .
Obtained from inverse propagation historical data
. Changing parameters Stochastically simulated
Dynamic . .
based on incoming data parameters

Table 1: Applications of Parameter Modification Techniques

Furthermore, we can categorize dynamic parameters by whether they are proactive or
reactive. By proactive dynamic parameters we mean that these parameters are either set
in advance for every time step in the simulation, or are derived from a arbitrary function
that does not consider any history of economic activity (i.e., the function is agnostic to
the state of the economy). Reactive dynamic parameters are the parameters that are
obtained from some arbitrary function that takes the state of the economy as an input to
produce parameters for the next time step (e.g., a change in the sizes of incentives paid
out to all agent categories follows the review of an inflation reading collected in the last
time step).

Table 2] describes use cases for proactive and reactive dynamic parameters. Whether
dynamic parameters are proactive or reactive depends on how B(t) and I'(¢) are defined,
but this categorization doesn’t change the general form of the dynamical system for the
case of the dynamic parameters. We make this distinction between dynamic parameters to



Deterministic Probabilistic
Proactive Predeﬁped program of P‘redeﬁned program
changing parameters of changing stochastic parameters
Parameters generated Stochastic parameters
Reactive in response generated
to the state of economy | in response to the state of economy

Table 2: Applications of Dynamic Parameter Modification Techniques

demonstrate that there can be a more detailed taxonomy of the parametrization methods,
but we will not expand on this further in this paper.

Since we will be looking at modifying the parameters of the dynamical system, we
reiterate the original definition of interaction rates, that we have used before [I],

% Z’AA'GIAA/ L(Z.AA/’ t)

fan =15 F(A ) F(A' 1)

VteT, (15)

where At is the difference between two consequent time steps, 144/ are is an interaction
type defined between agent categories A, A’ € E;, I 44 is the set of all possible interaction
types defined in the tokenomic taxonomy between A and A’, and t(isa/,t) is all wealth
redistributed between A and A’ due to interactions of type i4q4/ that took place in the
interval (t — At,t).

Essentially, we can think of 544/ as the net wealth redistributed between A and A’
expressed as the proportion of wealth that these agent categories have. Using the analogy
from section 2.1, let k44 be a purchase of a car, and js4 be a purchase of a truck - both
of these are possible interaction types that can take place between Car Manufacturer and
Household, while ¢ is the wealth that is reallocated from Household to Car Manufacturer
for purchasing these goods, such that

DiAA’(t)PiAA/ (t) = L(iAA/, t), (16)

where D;  ,,(t) is the demand for interaction of type iq4: (i.e., how many cars or trucks

were purchased since the last time step), and P;, ,(¢) is the price of each interaction (i.e.,

the price at which these goods were purchased).
We can now explore how by modifying the definitions above we can make DeTEcT

more flexible.

3.1.1 Static Deterministic Parameters

Static deterministic parameters are the ones that we have defined in the section above.
These are the basic building blocks upon which we can implement our modifications.
The fundamental assumption we use here is that the parameter values do not change in
time, and in order for that to happen we must balance net wealth redistributed (i.e., ¢) and
the wealth functions of the agent categories (i.e., F'(A,t) and F/(A’,t)). We assume that at
every time step the prices P;, ,(t) are readjusted against the given demands D; ,,(t) and
wealth functions for that time period.These restrictions give rise to the following effects:

e Forward Propagation: Inaccuracies in modelling real economies, as in real economies

interaction and rotation rates will be changing in time. The parameters themselves
are derived from arbitrary historical transaction data, which limits the possible
cases. However, the numerical simulation with these “simple” parameters is very
quick and straight forward.



e Inverse Propagation: If economy governors have the control over the price set-
ting mechanisms, maintaining constant parameters is easy as it is done via setting
appropriate prices. However, in the case of a free market economy, the parameters
would not be maintained at a constant level as market participants will be free
to set their own prices in response to changing demand. The numerical solution
employed to perform inverse propagation needs to be run only once to obtain the
desired values of interaction and rotation rates.

The interaction rates are defined as

M2, ety Wiaat)

)= VteT 17
Pan = KA DA D) <4 (17)

while the rotation rates are just constants
Yaa =c¢, c€R (18)

3.1.2 Static Probabilistic Parameters

Static probabilistic parameters are an extension of the static deterministic parameters,
where we add a term that represents a probability of success for each interaction type
taa and it tells us how many interactions of this type we expect at each time step.
The effects of this parametrization technique are not much different to those of static
deterministic parameters. The notable difference is that now we can use historical data
to create a probability distribution for the demands D;, ,,(¢) and at each time step we
aim to rebalance these “expected” demands with the prices.

The benefit of using static probabilistic parameters as opposed to static deterministic
ones, is that we simulate the wealth distribution based on the historical data compared
to some arbitrary demands. We can use any probability distribution to simulate the
distribution of demands, but the only restriction we impose for now is that the choice
of probability distribution should match the data format of the demand (i.e., demand
cannot be 1.5 if the interaction is Buying car, but it can be 1.5kg if the interaction is
Buying rice for $100 per kg).

For example, assume that for each interaction type 144 € 144/ there exists a probabil-
ity pi,,, € [0, 1] that the interaction of this type takes place with the Bernoulli distribution
I ., ~ Be'r’noulli(piAA/). Now we can write interaction rates as

TAAl
MZZAA/EIAA’ [LAAI]L(Z.AA”t) MZZAA’EIAA’ piAA/L(Z.AA’at)
At F(At)F(At) At F(At)F(A't) ’

Baa = teT, (19)

where p;, , acts as a weight for the summation over ¢. If we plug equation [Iflinto equation
above, we get

MZ p’iAA/DiAA/(t)PiAA/(t) MZZAA’EIAA’ [ZAA/]PiAA/(t)

Ba = o, TraaSian ; (20)
At F(At)F (A t) At F(At)F (A1)
where Z; o ~ B, (t),pi,, ) is the binomial distribution for multiple interactions of
type iaar.

We can generalize this notion by defining the static probabilistic interaction rates as

% ZiAA/ SIPYY. E[,ﬁiAA/]PiAA’ <t)
At F(A ) F(A 1) ’

Ban = (21)
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where D; v 1s the probability distribution of demand for interaction type i/, assuming
that the distribution of demands is well-defined (i.e., no fractions of car being sold).

The rotation rates y44: can also be distributed according to a probability distribution
that is based on the historical data. Recall that rotations describe the reallocation of
wealth from one agent category to another due to some individual agents changing their
agent categories between time steps. Given that we have a well-defined tokenomic taxon-
omy, we can look at historical data to see what agents have changed their agent categories
and, therefore, we can estimate on average how much wealth is rotated between different
agent categories per time step. In this case, the rotation rates are defined as

Yaar = faa, paa €R, (22)

where p144/ is the average gross wealth moved from agent category A to A’ due to rotations
of agents from A to A'.

3.1.3 Dynamic Deterministic Parameters

Now, we can add a further generalization to our framework by defining the dynamic
deterministic parameters. The dynamic deterministic parameters are the interaction and
rotation rates that are time-dependent (i.e., Baa/(t) and ya4/(t)). The motivation for
introducing time-dependence is that when we work with real-world data it is likely that
the wealth redistribution rates will vary in time, in particular as an economy goes through
economic cycles. When using the static parameters we assume that economies balance
out demands and prices to construct price hyperplanes, but in the case of real-world
economies this is generally not the case.

The effect of introducing the dynamic deterministic parameters on the simulation has
major impacts:

e Forward Propagation: Since the parameters can be arbitrary, we could fit our
dynamical system on any dynamics with the same number of agent categories and,
therefore, fit our model onto any economy. This might be useful when we are
changing parameters based on the incoming data to perform analysis of economic
activity in an economy, but this is not helpful when we are trying to simulate future
results as the dynamic parameters are too flexible.

e Backward Propagation: With the dynamic parameters we can perfectly fit our
model on the empirical data as at every time step we can change the rates ap-
propriately to link wealth distributions at different time steps. This allows us find
exactly what the parameters were historically, and we could find how parameters
need to evolve in order to make the dynamical system behave in a specific way, but
the computation time will increase significantly compared to the static parameter
cases, in particular with high number of agent categories.

In order for the interaction rates to become dynamic we need to lift the constraint that we
imposed when defining static deterministic interaction rates - that the vector of demands
and the vector of prices will balance out the wealth functions of agent categories A and
A’. Dropping this assumption results in the dynamic interaction rates defined as

% ZiAA/GIAA/ L<iAA/’ t)
A F(A (AL

The rotation rates become dynamic by assuming that for a rotation of wealth from A to
A’ there exists a discrete function gaar : T — R well-defined V¢ € T such that

Yaar(t) = gaa(t). (24)

Baa(t) = VteT. (23)

8



3.1.4 Dynamic Probabilistic Parameters

The last case of parameter modification is the dynamic probabilistic parameters, where
interaction and rotation rates are time-dependent and are defined by stochastic processes.
The motivation for this procedure is that we can create stochastic processes that satisfy
the distribution of empirical data at different time steps, and we can feed these processes
inside the simulation in order to gauge what an economy may look like.

Compared to the dynamic deterministic parameters, we now have explainable param-
eters that are based on the distribution of historical data. This allows for a good risk
assessment tool, where the economic dynamics is simulated multiple times, so that we can
see what are the possible “bad” cases for the economy, how they may play out, and what
are the impacts of these cases on different agent categories. However, this means that the
backward propagation is fruitless in this case as the stochastic processes will ensure that
every time we run the dynamical system the dynamic of the simulated wealth distribution
will be different.

The static probabilistic parameters were defined using the probability distribution
D; v that simulates the demands at each time step, and then the interaction rates are
kept constant by rebalancing the varying demands with prices and wealth functions. We
again lift the rebalancing constraint, so that the interaction rates become

M ZZAAIEIAA/ ianl tPZAA'( )
At F(At)F(At) ’

Baa = (25)

where {f)l o +t her 1s the stochastic process that simulates the demand for the interactions
of interaction type 744/, and D, .t 15 the random variable that follows this stochastic
process. This implies that if we have n interaction types, we will need n stochastic
processes simulated each being |T| steps long, which are then used inside of the dynamical
system to simulate the wealth distribution in an economy.

Just like with static probabilistic interaction rates, we have to make sure that the
values simulated by the stochastic processes “make sense” so that we don’t get infeasible
demands (e.g., half a car being sold).

The rotation rates themselves become stochastic processes and are defined as

Yaa(t) = Gaary, (26)

where {G 444} is the stochastic process that simulates the gross wealth redistributed from
agent category A to A’, and G 44/, is the random variable associated with it.

3.2 Relationship to Existing Wealth Distribution Models

In this section we demonstrate how our framework is related to the existing wealth distri-
bution models. To proceed we must first state that it is common for the wealth distribution
to be studied from the perspective of agent-based models where individual agents transact
with one another resulting in wealth redistribution.

As we have seen in the previous section, we can redefine the dynamical system so that
it has dynamic parameters,

A

S E 0] =7F (1) @ [B(#) - F@O]+T() - F(o), (27)



where the matrix of interaction rates B(t) is

0 Baya,(t) oo Baa,(t)

s |Pen® 0 S]] o
Ban() Baan®) .. 0
and the matrix of rotation rates I'(¢) is
—Ya, (1) Yapa, (t) o va,a(t)
I(r) — ’VAlf.xz(t) —’Vf?g(t) ﬁAn/_xg(t) (20)
T Baa®) o~y ()

This new generalized definition of the dynamical system can help us with the task of
connecting DeTEcT to existing wealth distribution models, as they tend to use dynamic
parameters.

Also, in the context of our framework, let us assume that the agent categories contain
only one agent, such that each individual agent has his own agent type (i.e., Va € AlIJA €
E; such that {a} = A, and in general |F;| = |A]). Having unique agent categories
for every individual agent also implies that rotations are not defined in this scenario as
agents cannot change agent categories, so the matrix of rotation rates is a zero matrix

(., () = Opr).

Remark. The assumption that there is only one agent per agent category is not neces-
sary for the wealth distribution models we are about to describe; what’s necessary is the
assumption that there are no rotations defined between the agent categories. The reason
we assume that there is only one agent per agent category is for the demonstration of how
our framework integrates with the existing wealth distribution models, where the notion of
agent category is not defined. In this section we refer to A; as an individual agent, since
it is a set A; = {a;} with the cardinality |A;| = 1.

The notions of interaction types and interaction quantities are also exclusive to De-
TECT; in previous literature on wealth distribution models, the net wealth redistributed
between agents is directly defined by one transaction at time step t. Without the loss of
generality, let the net wealth redistributed be defined as

AFAA/ (t) = Z L(iAA/, f}), (30)

Taar €140

where A and A’ are agent categories that contain one agent each. AF44/(t) is the net
wealth that has been transacted between individual agents ¢ € A and o’ € A’ at time
stepteT.

With these limitations, we can rewrite the equation [27] so that the dynamical system

becomes
A — 1 > =
~[F O] =5;F 0 B - F), (31)

with the individual interaction rates now being given by

M AF ()
At F(AHF(A L)

Baa(t) (32)

10



We can further simplify the equation BI], by applying the finite difference method. If there
are n agents in the economy, we have that |A| = n = |F;| implying that the vector F'(t)
is an n-dimensional vector of wealth functions for every agent. Switching from vector
notation to index notation and applying the finite difference method, we obtain a system
with n dynamical equations

F(Ajt) = F(A;,t — At) + %[F(Aj,t — At) i Baa(t — AYF(Ag,t — Af).  (33)
k#j

Using equation 32] we simplify the equation above to

F(Ajt) = F(Aj,t = At) + > AFy a,(t — Al), (34)
k#j

which is a version of the dynamical system that is often considered in the literature and
studies on wealth distribution [9].

Equation [34l describes the redistribution of wealth between agents in the economy from
the perspective of individual transactions, and is referred to as the transaction rule. The
terms ALy, 4, (t — At) are the net transactions that take place between agents such that
the invariance of wealth assumption is satisfied,

M=) F(A). (35)

Without the loss of generality, we can pick a time interval At such that an individual
agent performs at most only one transaction in this interval. This further reduces the
problem, where the transaction rule is simplified to become

and the change in wealth of the counterparty Ay, is defined as
F(Ag,t) = F(Ag, t — At) + AF(ARA;)(t — At). (37)

Note that for the invariance of wealth to be satisfied, the net change in wealth is anti-
symmetric,

AFya,(t— At) = —AFa, 4, (t — At). (38)

With the reformulated transaction rule defined in by equations and [B7] along with
the antisymmetric constraint on net change in wealth, we can demonstrate how existing
wealth distribution models are derived from our framework.

3.2.1 Wealth Distribution Model with No Saving

First model we consider is the wealth distribution model with no saving, introduced by
Dragulescu et al. [5]. This model assumes that an agent transacts a random portion of
his wealth at time step t.

Given the transaction rule defined in equations 6 and B7] the net change in wealth
in this model is defined to be

AF(AjAR)(t — At) = €0, F(Ag, t — At) —eq,4, F(Aj,t — At), (39)
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where € ~ U(0,1) is a random proportion of the combined wealth of A; and Ay, that the
agent A; will have after the transaction. Given this definition of net change of wealth,
the transaction rule can be rewritten as

F(Aj,t) :EAJAk<F(AJ,t—At)—FF(Ak,t—At)) (40)
F(Ag,t) = €ayn, (F(Aj,t — At) + F(Ag, t — At)),
where €4, 4, is the complimentary fraction of €4,4, (i.e., €a,4, +€a,4, = 1).
This model describes the wealth distribution dynamics through random interactions,
similar to a kinetic model of gas particles interacting inside a closed container. The
simulation of this model produces an equilibrium of wealth distribution (i.e., the attractor
of the dynamical system describing the wealth distribution) that fits to the Boltzmann
distribution (else known as the Gibbs distribution)

9(4;) = <—F>€7 ), (41)
with Y
(F) =", (42)

where M is the maximum supply, and n is the number of agents in the economy (i.e.,
n = |A]). In thermodynamic terms, the average temperature of the system is the average
wealth (F') of an agent in the economy [9], and the energy of the state is the wealth F'(A;)
of an agent A;. Note that we dropped the time-dependence of the wealth function F'
given that the distribution of wealth between agents reaches an equilibrium and since the
system attained its attractor the change of wealth over time is negligible. The equation [41l
is the probability density function that defines the probability that an agent has wealth
F(A)).

An interesting feature of the Boltzmann distribution in equation [Ilis its “robustness’
with respect to different factors such as initial conditions or multi-agent interactions,
which do not impact the accuracy of the fit of the Boltzmann distribution over the equi-
librium of the wealth distribution obtained from the trading rule in the equation

The reason this model is said to have “no saving” is because €4;4, can be 0 or 1,
which leads to an agent obtaining all the wealth from the counterparty. In this context,
saving is defined as the proportion of wealth that an agent is guaranteed not to transact
regardless of the value of the parameter €4,4,. We will consider the implementation of
the “saving parameter” (i.e., saving propensity) later in this section.

3.2.2 Wealth Distribution Model with Minimum Investment and No Saving

The model proposed by Chakraborti [6] introduces a concept of minimum transaction
value, F),;,, as a means to simulate a system where agents “invest” the same wealth with
the outcome of the investment being the wealth each agent receives from this joint invest-
ment pool. As in the previous model, the outcome of the investment (i.e., transaction)
is random and agents do not save any proportion of their wealth, risking it instead in a
form of an investment.

The net change in wealth is defined as

AFAjAk (t — At) = (2€AjAk — 1)me, (43)
where €4, 4, ~ U(0,1) as before, and

Frin = min(F(A;,t — At), F(Ay, t — At)) (44)
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is the minimum investment that both agents A; and A; make, which is equivalent to the
wealth of the agent with the smaller wealth (e.g., if FI(A;,t — At) < F(Ay,t — At) then
the minimum investment is F,;,, = F(A4;,t — At)).

Applying this definition of net change in wealth to the general transaction rule (equa-~
tions 36 and B1), we get

F(Aj,t) = F(Aj,t — At) + (2e4,4, — 1) x min(F'(Aj,t — At), F(Ag, t — At)) 45

F(Ak, t) = F(Ak,t - At) + (QEAJ-Ak — 1) X mm(F(Aj,t — At), F(Ak,t - At)) ( )
The dynamics of this system is unique in the sense that over the course of the simulation,
agents will loose their wealth such that F,,;, = 0, which means they cannot invest any
more or participate in the transactions. This implies that the agents are being “driven
out of the market” once they run out of wealth to transact.

This peculiarity of the model leads to the wealth distribution equilibrium to be de-
scribed by a power-law (i.e., g(A4;, t—At) ~ F(A;,t—At)™" with some exponent parameter
v for a given time step ¢ — At) with an exponentially falling tail (i.e., g(A;,t — At) ~
e~ @F(45:1=A1 with some parameter a for a given time step t —At), and as t — oo all agents
apart from one are driven out of the market, while that one agent holding all maximum
supply M (i.e., limy o F'(A;,t) = M). From the numerical simulations, it is estimated
that for ¢ = 15,000,000 more than 99% of agents are driven out of the market [6].

Note that here we did not drop the time-dependence of the wealth function F' since
the probability density function is defined at the time steps leading to the equilibrium,
but not at the equilibrium. At the equilibrium only one agent has all the wealth.

3.2.3 Wealth Distribution Model with Global Saving
Propensities

In this model, a global saving propensity A € (0,1) is introduced for the purpose of
modelling the wealth distribution. The global saving propensity is the proportion of
wealth that each agent will save before transacting. The range of saving propensity is
taken to be between 0 and 1 implying that an agent cannot save all wealth (i.e., A = 1) or
invest all wealth (i.e., A = 0). It is also assumed that the saving propensity is independent
from time or any other parameters.

For this model, the net change of wealth is

AFAjAk(t — At) = (1 — A)[gAjAkF(Ajat — At) — eAjAkF(Ak,t — At)] (46)

where € A, ~ U (0,1) with its complimentary fraction € AjAy- Under this definition, the
transaction rule becomes

F(Aj,t) = AF(Aj,t — At) + ea,4, (1 — N (F(Aj, t — At) + F(Ag, t — At))

F(Ag,t) = AF(Ag, t — At) + €a,a, (1 = N)(F(Aj, t — At) + F (A, t — At)). (47)

The equilibrium of the wealth distribution dynamics in this system is described by the
Gamma distribution. For an effective dimension D, defined by

Dy, 142\
— 48
and the temperature defined by the relation
a(F) 1—2A\
T, = = F 4
=y T (49)
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through thg equipartition theorem, the probability density function of “reduced” wealth
F(A)) -
§(Ay) = S s

1

9(E(A)) = [ 7y EA) e ) = (€(4) (50)

(F) is the average wealth of an agent in the economy, and yp, is the Gamma distribution
2

of order %.

The saving propensity in the range A € (0, 1) constraints the effective dimension to 2 <
D,. For integer and half-integer values of %, the probability density g(£(A;)) becomes
Maxwell-Boltzmann distribution at the temperature Ty in a D,-dimensional space; for
Dy = 2, the Gamma distribution simplifies to the Boltzmann distribution [9].

The temperature T) in this model describes the fluctuation of agent’s wealth around
the average value (F'). By the equipartition theorem (i.e., equation @9, if the saving
propensity monotonically increases, the temperature monotonically decreases implying
agents’ wealth fluctuates less with higher A according to the Gamma distribution. This
result is consistent with the transaction rule in the equation [47 as we expect that a higher
saving propensity results in agents transacting smaller quantities of wealth, which leads
to a less “volatile” wealth redistribution between the agents in the economy.

3.2.4 Wealth Distribution Model with Individual Saving
Propensities

The shortcoming of the wealth distribution model with the global saving propensity is the
assumption that every agent’s saving propensity is the same. In the real-world, agents are
likely to have different risk tolerance, which means their saving propensities will differ.
Therefore, a wealth distribution with individual saving propensities is introduced, where
every agent A; has his own saving propensity A;. Just like in the previous model, the
saving propensities A\; are assumed to be constant.

The net change in wealth is defined as

AFAjAk(t — At) = gAjAk(l — )\j)F(Aj,t — At) — EAjAk(l — )\k)F(Ak,t — At), (51)

and the associated transaction rule is

F(Ajt) = NF(Ajt — At) 4+ eq,4,[(1 = X)) F(Aj t — At) + (1 — ) F(Ag, t — At)]
F(Ag,t) = MF(Ap,t — At) +€a,a,[(1 = X)) F(Aj, 6 — At) + (1 = A\ F(Ag, t — At)].
(52)

This transaction rule leads to the equilibria being described by different probability densi-
ties, and the choice of the probability density depends on the configuration of the individ-
ual saving propensities \;. However, if a system is simulated many times with different
individual saving propensity configurations, the average across the equilibria that the
system has attained is distributed according to the Pareto distribution

F(Aj)ot!

s =

{ a(Fmin)a F(Aj) Z szn (53)

where the parameter a (i.e., Pareto exponent) is set to 1, while F),;, is the minimum
wealth an agent in the economy can have (e.g., in an economy where we cannot create
credit/debit - we have no debt, asserting that 0 < F(A4;), so the parameter F},;, can be
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set to zero despite the assumption that wealth is always positive as the probability that
F(A;) = 0 is negligible).

This is an interesting result since the Pareto exponent o = ﬁgz—igi ~ 1.161 leads to the
Pareto principle else known as the 80-20 law. This principle states that the 80% of wealth
belongs to the 20% of agents, which coincides with the empirical data in the real-world

economies [12].

4 Dynamic Money Supply Extension

In section 2.1l we mentioned that we assume the maximum supply to be constant, and for
some real-world token economies (e.g., Bitcoin [I4]) this assumption is satisfied. However,
there are plenty of token economies that do not have a capped maximum supply and can,
in practice, mint infinite number of tokens (e.g., Ethereum [15]).

4.1 Dynamic Money Supply Models

To model wealth distribution in token economies where maximum supply is not constant,
we must define an extension to our framework. Maximum supply can increase or de-
crease, and in the context of this paper we refer to these processes as incrementation and
decrementation respectively. We define some of the possible models of dynamic maximum
supply in Table [3l and will elaborate on these below (note that the taxonomy is not ex-
haustive as there can be infinite number of functions that model the change of maximum

supply).

Name Change in M Deterministic | Monotonic
Simple . Linear Increase
Incrementation (Decrease) Yes Yes
(Decrementation)
d .
Compoun' Exponential Increase
Incrementation (Decrease) Yes Yes
(Decrementation)
Stochastic
. Average Increase
Incrementation (Decrease) No No
(Decrementation)

Table 3: Taxonomy of Dynamic Maximum Supply

4.1.1 Deterministic Maximum Supply Models

We start by looking at the simplest model from Table[3] which is the simple incrementation
and decrementation. This model linearly changes the maximum supply such that at every
time step ¢t € T the maximum supply increases or decreases by a constant value. This
maximum supply model causes the maximum supply to be in the range (—o0, ).

In our framework, we can’t have a zero maximum supply as the generalized equation
will be undefined. Moreover, negative maximum supply doesn’t make sense in practice, so
we must introduce a constraint on what the input rate of incrementation (decrementation)
we can set in order to ensure the range of maximum supply stays in the (0, 00) range.
Below we define the simple incrementation (decrementation model).
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Definition 1. Simple incrementation (decrementation) is the incrementation (decre-
mentation) of mazimum supply with the same amount of wealth at every time step. At
time t, mazimum supply with simple incrementation is the mapping M : T — (0, 00) such
that

M(t) = (1 + rt)Minitiala (54)

where Minitia € Rsq 18 the initial mazimum supply at time tinizia, and r € (—%, ) CR
for allt € T is the incrementation (decrementation) rate.

The compound incrementation (decrementation) model changes the maximum supply
by adding (subtracting) a constant percentage of the maximum supply from the previous
time step ¢t — At. Over time, this results in the exponential rise (fall) in maximum supply,
with the its range being (—o0, 00). Yet again, we must ensure that the range of maximum
supply in this model remains in the “reasonable” (0,0c0) range by readjusting the rate
parameter of this model.

Definition 2. Compound incrementation (decrementation) is the incrementation
(decrementation) of mazimum supply with the exponentially growing (shrinking) amount
of wealth at every time step. At time t, mazimum supply with compound incrementation
is the mapping M : T — (0, 00) such that

M (t) = (1 + ) Minitiar, (55)

where Minitia € Rsq is the initial mazimum supply at time tiiia, and r € (—1,1) C R is
the incrementation (decrementation) rate.

4.1.2 Stochastic Maximum Supply Models

The stochastic incrementation and decrementation model introduces a stochastic process
{R;}ier that changes the maximum supply in time. These changes are not monotonic
but we consider that there exists a time series of expected values for this process.

Definition 3. Stochastic incrementation (decrementation) is the average incre-
mentation (decrementation) of mazximum supply with the discrete-time stochastic process
{R:}ier with the property that 0 < Ry for everyt € T' (e.g., geometric Brownian motion).
At time t, maximum supply with stochastic incrementation is the mapping M : T — (0, 00)
such that

M(t) = R¢Minitiai, (56)

where Mipitia € Rsq 18 the initial mazimum supply at time tiniia, and Ry is the stochastic
process with a range € (0,00) and the expected value time series E(R;) = ugr(t), such that
under a transformation t — t' the expected value transforms as pgr(t) — pgr(t’).

4.2 Fundamental Theorem of Tokenomics: The Time Transla-
tion Symmetry

In physical systems, the concept of continuous symmetry, or invariance, of the system is
deeply associated with the conservation laws, and in particular, the Noether’s theorem [13]
states that for every continuous symmetry that a physical system exhibits, it must have
a corresponding conservation law. This statement can be reformulated to state that if a
system has a symmetry, then there will be a quantity, or quantities, that are conserved
(e.g., in most physical systems, energy is the conserved quantity with respect to time
translation symmetry).
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The consequence of the Noether’s theorem is that there must exist a vector J (i.e.,
conserved current) associated with the conserved quantity, that satisfies %J +VJ =0
(i.e., continuity equation). The conserved current becomes a property of the system, which
can aid in solving the system or verifying a proposed solution.

In the context of our framework, a symmetry is an important property that states that
there exists a conserved current that the economic system must satisfy. The objective
of this section is to demonstrate that an economic system defined using DeTEcT has a
time translation symmetry and that this symmetry gives rise to the conservation principle
stated in the equations [I] and

By time translation symmetry we mean that there exists an invariant quantity that
will be conserved for any point ¢ € T'. In equations[Iland Pl the time translation symmetry
is manifested by the invariance of the maximum supply M, as it does not change for any
t € T. Given the maximum supply models defined the section above we can demonstrate
that these maximum supply models do yield the conservation law, and we will also show
that for a generic function satisfying certain constraints, the economic system will also
have a time translation symmetry.

Theorem 4.1 (Time Translation Symmetry). If maximum supply is constant or
has simple, compound, or stochastic incrementation (decrementation), there exists a time
translation symmetry in the economy.

Proof. Let the set of n agent categories be
E,={A,.., A}, neN. (57)

Without loss of generality, assume that at ;.. the wealth is distributed between the
agent categories such that

Z F(Aj, tinitiat) = Z F(Aj, tinitiat) = Minitiat,  Minitiar € Rso, (58)
AjEEL Jj=1
where in the first equality, it is assumed that |F;| = n, and ¢ is a label for a pseudo-

partition, and not the number of agent categories.
For every t € T and an interval At, next time iteration is defined as t' = ¢ + At.
Proceed for each of the cases.

Case 1: Constant Maximum Supply
Assume for arbitrary ¢ € T the following holds:

Z F(Aj,t) = Minitial- (59)
j=1
It is sufficient to prove that this holds for time ¢'.

By discrete differentiation, the differential form of the equation B9 is

S IR o), (60)

j=1
By translating in time ¢ — ¢’ and Taylor expanding up to order O(At#?),

ZF(Aj,t’) = (F(A;,t) + AF At~ iEAJwt - A75)) _

j=1

(61)

= Z F(Aj7 t) = Minitiab

J=1
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where for the second equality the property in the equation [60] was used. Therefore,
the statement in the equation B9 is proved by induction for all ¢t € T'.

Case 2: Maximum Supply with Simple Incrementation (Decrementation)

Given the definition [ assume for arbitrary ¢ € T and r € (—%,00) CRVr € T
the following holds:

Z F(A 1+ 7t) Minitiar - (62)

It is sufficient to prove that this holds for time ¢'.
By discrete differentiation, the differential form of the equation [62] is

"F(A.t)— F(A. t—
Z (45,1) A( ot = Al = v Minitial- (63)

, t
7j=1
By translating in time ¢ — ¢’ and Taylor expanding up to order O(At?),

(A, ) = D (F(A0) + At = ZEAM A,

7j=1

s I

=) " F(Aj 1) + AtrMinia = (64)

7j=1
(]_ + T‘t) initial + AtTMzmtzal -
(]. +rt ) initial s

where for the second equality the property in the equation [63 was used. Therefore,
the statement in the equation [62] is proved by induction for all ¢t € T'.
Case 3: Maximum Supply with Compound Incrementation (Decrementation)

Given the definition 2 assume for arbitrary ¢t € T'and r € (—1,1) C R the following
holds:

Z F(A (1 + ) Minitial- (65)

It is sufficient to prove that this holds for time ¢'.
By discrete differentiation, the differential form of the equation [63 is

"\ F(Ajt) — F(Aj,t — At
Z< ) — F( )

X =In(1+7)(1+ ) Minitiar- (66)

j=1

By translating in time ¢ — ¢’ and Taylor expanding up to order O(At#?),

ZF(Aj,t’) =Y (F(A;,1) + aEAR Y = iiAj,t - A75)) _

= F(A;, 1) + Atin(1 + 1) (1 + 1) Minitiar = (67)

1) Minitiar + Atin(1 4+ 1) (1 + 7)) Minitias =
7t") Minitial,
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where for the second equality the property in the equation [66] was used. For the last
equality the Taylor expansion of an exponential in general form was used

xln(a)
1!

a® = 6ln(a)ac -1+

+ O((xln(a))?), (68)

since r < 1 implying that In(1 +r) < 1.
Therefore, the statement in the equation [65]is proved by induction for all ¢t € T'.

Case 4: Maximum Supply with Stochastic Incrementation (Decrementation)

Assume for arbitrary ¢ € T and stochastic process { R; }ier the following holds:
Z F(Aj7 t) = RtMinitial- (69)
j=1

Expected value is used to stochastically discount the wealth function from one time
step to the next,

E[Z F(Aj7 t)] - Z F(Aj7 t) = E[RtMinitial] - E[Rt]Minitial - MR(t)Minitial-
j=1 j=1

(70)
Assuming that under time translations ¢ — t' the expected value of time series
transforms as pg(t) — pr(t’), it is sufficient to prove that the equality [69 holds for
time ¢’

By discrete differentiation, the differential form of the equation [69 is

i F(Ajvt) - F(Ajat - At) o AMR(t) M. ol (71)

At At

J=1

By translating in time ¢ — ¢’ and Taylor expanding up to order O(At?),

- ) - F(A t)—F(A; t — At
S (A1) = Y (F (A0 ¢ arT A TR Z A0,
j=1 j=1
N Apir(t) _
- ;F<A]7t> +At At Mlmtlal — (72)
Apg(t)

= pr(t) Minitiar + At
= pr(t") Minitial,

Mini ial —
At tial

where for the second equality the property in the equation [[1] was used. For the last
equality the Taylor expansion approximation of ug(t) was used.

Therefore, the statement in the equation [69]is proved by induction for all t € T'.

General Case: General form of the incrementation function.

Assume for arbitrary ¢ € T the following holds:

S F (45,0 = g(0) (73)
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where ¢(t) is an infinitely differentiable maximum supply function such that g(¢;nitia) =
Minitiat = g(to), and ¢(t) has a Taylor series approximation. It is sufficient to prove
that the equality above holds for time t'.

By discrete differentiation, the differential form of the equation [(3 is

z": F(Ajt)— F(Aj,t—At) A ol = g(t) — g(t — At)

== — p— . 4
v At A9 At (74)

By translating in time ¢ — ¢’ and Taylor expanding up to order O(At#?),

z z F(A;,t) — F(Ajt — At)
no_ j J _
E F(A;, 1) = E (F'(A;,t)+ At A ) =
J=1 J=1
o\ g(t) —g(t — At)

(1) + At g(0)] =
()

where we used the infinitely differentiable property of g(t), where its Taylor approx-
imation around t’ is

g
g

A
g(t') = g(t) + At =g (t')]- (76)
Therefore, the statement in the equation [[3]is proved by induction for all ¢t € T'.

O

This theorem demonstrates that an economy where maximum supply function is in-
finitely differentiable the economy will have a time translation symmetry. This result
allows us to make a couple of interesting statements about economies modelled with
DeTEcT.

First, the time translation symmetry can be interpreted as the time-value of money
principle that is widely used in finance. For example, if we assume that an economy has
a simple incrementation (decrementation), then the sum of wealth functions at a given
time step t € T' is

1

14+t

Z F(A;,t) = Minitial, (77)
j=1

which is just the “discounted cashflows” at this time step. Therefore, in our framework,
the time-value of money is the phenomenon caused by the symmetry associated with the
maximum supply, and is derived from the properties of the economy being modelled.

Second, we note that we can now add the incrementation term to the general equation
of the dynamical system in equation [ such that it reflects the dynamic money supply.

For us to add the general maximum supply function, g(¢), we must assume that g(¢)
satisfies g(tinitiat) = Minitiar = 9(to), and we also need to define incrementation on an
“agent category”-basis, as the incrementation mechanism tells us how much new wealth
has been created. But in order to add incrementation to the dynamical system we need
to specify what agent categories gain (lose) wealth (in most cases, we can assume that
the control mechanism will be the only agent category to gain or lose wealth due to the
dynamic maximum supply).
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Let G(A;,t) be the amount by which the wealth of agent category A; has been changed
at time step . It is required that the sum of changes in wealth of all agent categories at
time step t is the difference between the maximum supply of the economy between the
last and the current time step,

Z G(Aj 1) = g(t) — g(t — Al). (78)

We can define a vector of wealth changes, G (), where every entry is the incrementation
(decrementation) of wealth of the respective agent category at the given time step,

Gt) = (G(AL 1), ... G(Ay, )T, Ar,.., A, € E,. (79)

Now, we add the incrementation (decrementation) mechanism to the dynamical system
in equation [3 to obtain its modified version,
A - 1 - —>

—[F(t)]=——=F#t)®[B-Ft)]+T-F(t)+G(t) teT. (80)
At 9(t)

We can prove that by induction the equation 80 holds for future time steps. First, assume
that the equation holds for ¢, and foi some arbitrary ¢ € T'. Then, for the next time step
t' =t + dt, the Taylor expansion of F'(t') is

(81)

where we used equation B0, and ignored all terms of O(6¢?) and higher, as we consider
the interval 0t to be very small.
The finite difference of F' around ¢’ is
At A = A A

AP = PO+ gl g Pl =

= —Ft)o[B-FM)]+T-F(t)+ G(t)+

which proves that the equation [R0 holds by induction for all time steps. This equation
is the general form of the dynamical system with static parameters and dynamic money

supply.

4.3 Dynamic Money Supply and Parametrization Techniques

At last, we address the case where dynamic money supply and different parametrization
techniques are applied simultaneously. The dynamical system with dynamic maximum

21



supply and dynamic parameters will have the same form as the system in the section
above, but with the explicit time-dependence of B(t) and I'(¢),

%[ﬁ(t)] = ﬁﬁ(t) OB -F)]+T#) -Ft)+Gt) teT. (83)

It can be proven, that this form of the dynamical system stands for the future time step
using the same methodology as described in the previous section, but we will alleviate
the calculation for the purpose of the paper.

5 Conclusion

The aim of this paper was to demonstrate how our proposed framework, DeTEcT [, fits
into theoretical research on wealth distribution models, and how it can be improved to
be more flexible for modelling wider range of real-world token economies with different
features.

In this paper, we described multiple ways that our framework can be parametrized
to remain very flexible. Static probabilistic parametrization enables us to model the
wealth distribution dynamics based on the real-world data, and dynamic deterministic
parametrization can be used to simulate dynamically-changing set of policies in the econ-
omy, while static deterministic and dynamic probabilistic parametrizations are convenient
for simulating different economic scenarios with static or variable set of policies. More-
over, each of these parametrization techniques can be customized further with the choice
of preferred probability distribution, or stochastic process, or even a deterministic function
that will define prices for individual goods.

Additionally, we introduced a dynamic money supply extension that covers token
economies with time-dependent money supply (e.g., Ethereum [I5]). This extension works
harmoniously with the parametrization techniques and expands the use cases for DeTEcT.

In summary, we have added improvements to our framework, which will help us with
building the simulation engine that performs analysis and runs simulations of wealth
distribution in real-world token economies, and will allow us to study the interactions
between different agents and agent categories. Despite these improvements, this paper
does not present an exhaustive list of modifications and features that can be added to
DeTEcT (e.g., tokens with expiration mechanism), but we believe that the extensions we
have presented here are the ones that carry the most significance for the framework, and
demonstrate the approaches in which researchers can modify the framework to use it in
different context.
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